1689. Ученые сняли на видео движение света

Триллион кадров в секунду: ученые сняли на видео движение света

National Geographic Россия 18 июня 2020

/upload/iblock/5e0/5e0e99fe3df63b8d89caa7c20d09f2d6.jpg

Фото: geralt/pixabay.com 49 1278 70 При помощи высокоскоростной камеры ученым удалось заснять движение самой быстрой во Вселенной силы – света.

В Массачусетском технологическом институте была создана (2015) камера, которая может снимать один триллион кадров в секунду, что почти в 42 миллиарда раз быстрее, чем обычная кинокамера, скорость которой — 24 кадра в секунду.

На видео показана экспериментальная съемка движения фотонов в воде со скоростью 966 миллионов км/ч. В реальном времени это длилось наносекунду. Для сравнения: наносекунда соотносится к секунде также, как секунда — к 31,7 годам. Человеческий глаз не может заметить движения объекта с такой скоростью, поэтому камера замедлила съемку до 20 секунд. «Если бы таким же способом был снят полет пули, то полученное в результате видео длилось бы три года», — объясняет Джон Маркофф (John Markoff) из New York Times.Native Ttarget

В 2014 году ученые из Токийского университета и Университета Кейо создали камеру, которая работает со скоростью 4,4 триллиона кадров в секунду.

https://nat-geo.ru/science/trillion-kadrov-v-sekundu-uchenye-snyali-na-video-dvizhenie-sveta/

1688. Справки по ходу работ над прототипами элементов для моих космических ковчегов

Плазменный ракетный двигатель. Что заказал «Росатом»?

Источник контента: https://naukatehnika.com/plazmennyj-raketnyj-dvigatel.html?utm_referrer=https%3A%2F%2Fzen.yandex.com&utm_campaign=dbr
naukatehnika.com

«Росатом» заказал испытания новейших моделей космических двигателей нового поколения. Их проведение запланирована на текущий год. Речь идет о лабораторных моделях так называемых ионного и холловского двигателей. Новые двигатели должны обеспечить тягой автоматические, а также пилотируемые межпланетные космические корабли. В техническом задании отмечается, что для реализации данной задачи требуются силовые установки большой мощности. Испытания лабораторных моделей новых, так называемых ионного и холловского двигателей для космоса, как планируется, должны пройти в нынешнем году.  

Как отмечается в техзаданиях, многие страны исследуют вопросы создания автоматических и пилотируемых межпланетных кораблей с использованием электрических ракетных двигательных установок (ЭРДУ) большой мощности (свыше 100 кВт). Сейчас появились практические разработки по ядерным реакторам космического базирования мегаваттного класса, которые могут обеспечить энергией такие двигатели. Заказанные ТРИНИТИ работы направлены на создание лабораторных моделей ионного и холловского двигателя нового поколения с повышенными характеристиками, которые будут основой для создания кластерного ЭРДУ большой мощности. Плазменный двигатель — разновидность электрического ракетного двигателя (ЭРД), расходуемое вещество которого получает ускорение в состоянии плазмы (ионизированного газа).

В отличие от жидкостных двигателей, такие системы не предназначены для вывода грузов на орбиту, поскольку могут работать только в вакууме и сейчас используются, например, для удержания спутников на так называемой точке стояния. Кроме того, за счет уменьшения запасов рабочего тела при сравнительно высокой скорости его истечения, они рассматриваются как возможный способ совершения быстрых космических перелетов.

Ионный и холловский двигатели дают возможность разогнать космический аппарат в невесомости до скоростей, недоступных химическим двигателям. Двигатель на эффекте Холла — разновидность электростатического ракетного двигателя, в котором используется эффект Холла. При равных размерах с другим типом электростатического ракетного двигателя — ионным, холловский двигатель обладает большей тягой.

Испытания лабораторных моделей новых, так называемых ионного и холловского двигателей для космоса, как планируется, должны пройти в нынешнем году.

Ионный двигатель работает, используя в качестве рабочего тела, как правило, ионизированный инертный газ (аргон, ксенон), иногда и ртуть. Газ подается в ионизирующую камеру двигателя, где нейтральные молекулы становятся положительно заряженными ионами, которые ускоряются в электростатическом поле. Если в ионном двигателе ускоряются только положительные ионы, то в холловском двигателе задействовано все рабочее тело (то есть еще и отрицательные электроны). Поэтому холловский двигатель дает более высокую плотность тяги и, соответственно, большее ускорение.

Схема холловского двигателя. cyclowiki.org

Как отмечается в техзаданиях, у ионных и холловских двигателей сейчас наивысший уровень технической готовности и подтвержденные ресурсные характеристики в десятки тысяч часов (как при наземной отработке, так и при летной эксплуатации), однако у них есть недостатки. Основной из них ограничение по мощности единичного двигателя, снятие которого требует принципиально иных подходов к организации рабочих процессов в двигателях и соответствующих научных исследований. Отмечается, что на данный момент известны результаты испытаний ионного двигателя мощностью 35 кВт со скоростью истечения 70 км/с и КПД 75%.

Схема действия ионного двигателя. cyclowiki.org

Согласно техническим заданиям, до конца нынешнего года предстоит разработать, изготовить и провести испытания лабораторных моделей ионного двигателя мощностью до 20 кВт и холловского двигателя мощностью до 15 кВт. Цель работ — проверка основных технических решений с целью обеспечения создания прототипов плазменных ракетных двигателей с повышенными параметрами тяги и удельного импульса.   Государственный научный центр «Троицкий институт инновационных и термоядерных исследований» входит в научный дивизион «Росатома». Выполняет исследования в области управляемого термоядерного синтеза, физики плазмы, лазерной физики и техники. Уникальная экспериментально-стендовая база ТРИНИТИ позволяет получать результаты, имеющие важное научное и прикладное значение.

Ионный, холловский и магнитоплазмодинамический — три типа плазменных двигателей, уже нашедших практическое применение. За последние десятилетия исследователями предложено много перспективных вариантов. Разрабатываются двигатели, работающие в импульсном и в непрерывном режиме. В одних плазма создается с помощью электрического разряда между электродами, в других — индуктивным способом с помощью катушки или антенны. Различаются и механизмы ускорения плазмы: с использованием силы Лоренца, путем введения плазмы в создаваемые магнитным способом токовые слои, или с помощью бегущей электромагнитной волны. В одном из типов даже предполагается выбрасывать плазму через невидимые «ракетные сопла», создаваемые с помощью магнитных полей.

Во всех случаях плазменные ракетные двигатели набирают скорость медленнее обычных. Тем не менее благодаря парадоксу «чем медленнее, тем быстрее» они позволяют достичь далеких целей в более короткий срок, так как в итоге разгоняют космический аппарат до скорости значительно большей, чем двигатели на химическом топливе при той же массе топлива. Это позволяет избежать траты времени на отклонения к телам, обеспечивающим эффект гравитационной рогатки.

Источник контента: https://naukatehnika.com/plazmennyj-raketnyj-dvigatel.html?utm_referrer=https%3A%2F%2Fzen.yandex.com&utm_campaign=dbr
naukatehnika.com