Архив рубрики: Межпланетные корабли

1720. полет человека на Марс близок

Роскосмос готовит ядерный двигатель для полета человека на Марс

Полет человека на Марс является очень значимой задачей для всего человечества. Удачная высадка людей на поверхность Марса даст старт для нового этапа исследования космоса.

Источник - яндекс картинки
Источник — яндекс картинки

На сегодняшний день трудно сказать, сможем ли мы уже через 10 лет побывать на Марсе. Люди побывали на Луне, но так и не начали летать туда постоянно, это был гостевой полет и до колонизации Луны нам еще далеко. Но Луна совсем близко к нам, как же человек будет колонизировать далекий Марс не освоив естественный спутник.

Почему то все ведущие страны забывают о Луне и грезят о будущем на Марсе, как мы будет его осваивать без опыта? Полет автоматической исследовательской станции к орбите Марса это одно. Действие космической радиации на аппарат не столь губительно, как на человека. А ведь по задумке Илона Маска человечеству всего навсего нужен большой корабль, чтобы во время полета у экипажа было все необходимое для жизнедеятельности.

Мы движемся не в том направлении, вместо того, чтобы разрабатывать новые технологии, ракетные двигатели, топливо, системы обеспечения жизнедеятельности мы почему то просто тупо строим большую ракету.

Это напоминает мне Советский Союз и их опыт в строительстве ракеты Н-1, которая должна была использоваться для полета человека на Луну. СССР просто строил большую ракету, впихал на нее огромное количество двигателей из-за которых не один из трех пусков не оказался удачным. Система управления двигателями давала сбой и ракета камнем падала на землю.

Роскосмос не желает повторять опыт своих предшественников и вместо строительства большой ракеты как Илон Маск занимается разработкой нового вида двигателей на ядерном топливе, который при правильной работе и настройке будет в несколько раз эффективнее обычных жидкотопливных.

Источник - яндекс картинки
Источник — яндекс картинки

Если сейчас полет до Марса займет около 250 земных суток, то на тяге ядерного двигателя этот путь будет занимать всего 40 суток, чуть больше месяца.

Обеспечить экипаж водой, едой и кислородом на месяц куда легче, чем на 8 месяцев.

Топливо кончится и обратно экипаж улететь не сможет, с ядерными двигателями все намного проще. Полет замет полтора месяца и корабль с экипажем сможет вернуться на Землю.

Это настоящий прорыв, который позволит России с легкостью летать на Марс. В 2019 году инженеры испытали прототип ядерного двигатели, его мощность составила 1МВт. Это лишь начало, дальше мощность будет только увеличивать до 10-20 раз.

Источник - яндекс картинки
Источник — яндекс картинки
https://zen.yandex.ru/media/pop_nauka/roskosmos-gotovit-iadernyi-dvigatel-dlia-poleta-cheloveka-na-mars-5f18fddbbf5b646e62346194?&utm_campaign=dbr

Другие интересные статьи на канале

1711. «Вперед на Марс» — девиз Ф. Цандера подхватила НАСА

Nasa начало масштабную подготовку к полёту людей на Марс

Крупномасштабная операция Nasa по покорению Марса началась. Инновационный инопланетный марсоход Mars Helicopter Scout уже прошел все испытания и поставлен на колеса. В 2020 планируется старт грандиозного испытательного проекта Nasa. Если все получится и пилотный проект будет успешным, в 2027 году планируются первые переселения землян.

Сегодня пока рано еще говорить о прописке на Марсе, но все предпосылки уже есть. Готов специальный дрон, взяты пробы грунтов, которые доказывают, что на Марсе можно выращивать разные культуры для питания. Однако, для полноценной жизнедеятельности человека этого мало. Нужно изучить, как растения смогут приспособиться к особенностям гравитации планеты.

Есть проблемы и с углекислым газом, необходимым для растительного мира. Кислород тоже имеет большое значения, пока не принято решение, как обеспечивать кислородом первых поселенцев. Есть идея запустить на Марс специальные цианобактерии, они, питаясь каменистой почвой, будут выделять кислород. Ведутся разработки, готовятся научные исследования и эксперименты.

Еще одно препятствие для покорения Красной планеты, низкая температура воздуха. Человеку нужно не только благополучно долететь, но еще и выжить в погодных условиях планеты. Поскольку за бортом очень холодно: от минус 40, до минус 170 градусов на полюсах, есть проблема в защите от влияния сверх низких температур.

Скафандры, в которых межгалактические туристы будут находиться во время полета, не подходят для постоянного обитания на Марсе. При температурных перепадах в вакууме, скафандр защищает от холода и держит тепло, как термос.

Однако, на поверхности Марса происходит обратная реакция, скафандр «остывает», как чашка кофе на морозе. При очень низких температурах, человек быстро замерзнет и может погибнуть, по-этому принято решение модернизировать скафандры и адаптировать под температурные особенности марсианской погоды.

Существует, также, идея по строительству жилища для первых марсиан. Перевозить строительные материалы нелогично, было принято решение строить дома на месте. Для материалов планируют применить растительные инновационные материалы, специальные грибы. На разработку выделяется большая сумма денег и объявлен конкурс на лучший проект марсианского жилища. В проекте участвуют и частные космические корпорации.1ё

Также, Nasa объявила конкурс Journey to Mars Challenge на лучшие идеи, как выжить на Марсе. Этот проект касается жизнедеятельности человека: еда, вода, кислород. Все эти проекты разрабатываются и пилотная версия подходит к своему завершению. В ближайшем 2022 году, планируется приземление первой экспедиции для покорения «целины» на Марсе. А в 2027 году будет запускаться пилотный проект заселения Красной планеты людьми.

Оф.источник: https://naked—science-ru.turbopages.org/s/naked-science.ru/article/top/kurs-na-mars-kak-nasa-gotovitsya-k

https://zen.yandex.ru/media/neuronus.com/nasa-nachalo-masshtabnuiu-podgotovku-k-poletu-liudei-na-mars-5eb451b40eb0647a485a68d2?&utm_campaign=dbr

1702. обзор подходов к многоразовости средств выведения КА

Метановые ракетные двигатели и многоразовые космолеты

Орбитальный корабль Starship на Марсе

Сейчас ведется много разговоров о многоразовых космических ракетах, но при этом из внимания часто упускается главное — то, что такие ракеты пока еще только создаются. Потому что слово «многократный» подразумевает «много раз», а не «несколько раз», как это достигнуто на данный момент. В настоящее время можно говорить только о возвращении отдельных ракетных блоков для их повторного использования, как в американской ракете Falcon 9. По существу, ракетная техника находится в начале пути, который приведет ее сначала к частичной, а затем — к полноценной многоразовости и, наконец, она уподобится в этом плане авиационной технике и даже автомобильному транспорту. Именно тогда мы сможем создавать не ракеты, но автомобили, летающие в космос. Как это происходит и будет происходить — в статье на Автомалиновке.

Почему до сих пор не созданы многоразовые космические ракеты?

Ответ следует искать в технологиях ракетных двигателей 60-х годов. К этому времени в США были созданы ракеты, использующие высокоэффективное кислородно-водородное топливо. Не без оснований считалось, что водородные ракетные двигатели (РД) могут быть усовершенствованы для многократного использования — поэтому их выбрали в качестве основных маршевых РД для системы Space Shuttle. Но у жидкого водорода есть существенный недостаток — низкая плотность, из-за чего водородные ракетные ступени получаются громоздкими. Поэтому водород обычно применяется только на верхних ступенях. Чтобы решить проблему габаритов, «шаттл» оборудовали тяжелыми твердотопливными ускорителями, которые тоже полагались многоразовыми — но на практике их восстановление стоило не намного меньше повторного изготовления. С водородной частью «шаттла» тоже не все получилось хорошо — в орбитальный самолет поместились только ракетные двигатели RS-25, а громоздкий топливный бак пришлось сделать внешним и одноразовым. При этом подготовка ракетных двигателей к повторному полету занимала два месяца вместо первоначально ожидаемых двух недель. И многократность их использования оказалась меньше, чем обещалось — примерно 10 раз вместо ожидаемых 25 раз.

В итоге многоразовой оказалась только орбитальная ступень. И это было большое достижение! Хотя ее приходилось слишком долго готовить к повторному полету, восстанавливая ракетные двигатели и теплозащитное покрытие. В целом шаттл оказался экономически неэффективным по сравнению с одноразовыми ракетами-носителями — подробный анализ опыта этой программы содержится в нашей статье:
Время крылатых гигантов

Следующая итерация оказалась более удачной, поскольку при создании частично возвращаемой ракеты удалось добиться ее экономической рентабельности. Для создания ракеты Falcon 9 в SpaceХ использовали практичные кислородно-керосиновые РД, отказавшись и от водорода, и от твердотопливных ускорителей. Об этом подробно рассказано в нашей статье
Частный космос Илона Маска

Falcon 9 стал успехом, который сейчас намереваются использовать в других керосиновых ракетах — например, в сверхмалой РН «Электрон». Есть только одно но — при работе керосиновых РД образуется сажа, которая не позволят использовать их большое число раз. Пределом для керосиновых РД считается их 10-кратное использование, а реально достигнуто только 5-кратное (причем в рекордном полете 18 марта 2020 года произошел отказ одного РД). Этого маловато для того, чтобы считать керосиновые РД многоразовыми. Поэтому в проектах новых многоразовых ракет планируется заменить керосин на СПГ — сжиженный природный газ, метан.

Чем метановые ракеты отличаются от керосиновых?

Если вкратце, то перевод керосиновой ракеты на метан походит на перевод автомобиля с бензина на природный газ. Керосиновые ракетные двигатели могут быть модернизированы для работы для метане, при этом прекращается выделение сажи и улучшается основная характеристика РД — его удельный импульс (УИ), соотношение тяги к массовому расходу ракетного топлива. Правда, при этом приходится увеличивать размер бака горючего, поскольку СПГ менее плотен, чем керосин (0.41 кг/литр против 0.8 кг/литр). В итоге более эффективное, но менее плотное ракетное горючее дает примерно такие же характеристики ракеты, как и керосин.

Массовое соотношение кислорода к горючему и объем ракетного топлива

ГорючееO2
гор
плотностьобъем на ед. массыУИ вакобъем на ед. тяги
Водород60.072.7544550.00780
Метан3.50.4151.2143560.00378
Керосин2.60.7980.9813370.00317

Плотность жидкого кислорода — 1.14

Применение метана вместо керосина рассматривалось на заре космонавтики — но было решено, что особых преимуществ у СПГ нет. Ситуация изменилась именно с появлением многоразовых ракет, благодаря упомянутому отсутствию сажи при сгорании метана. А еще одно преимущество метана состоит в том, что его, как и кислород, можно добывать на многих планетах солнечной системы, например, на Марсе. Т.е. при полете метановой ракеты на Марс топливо надо брать только на путь туда, а для возврата на Землю организовать ее «заправку» на Марсе — конечно, при наличии на Марсе соответствующего оборудования, которое должно быть доставлено туда заблаговременно. Это в несколько раз снижает массу марсианского космолета.

Других преимуществом метана является возможность использования газообразного метана для наддува хранящегося в баке горючего жидкого метана — эта схема дешевле, чем применяемый наддув гелием. Близость температур кипения жидкого метана и кислорода 109К и 77К помогает в организации оптимального хранения топлива.

Благодаря своим вновь открывшимся преимуществам метан был объявлен топливом будущего, а исторически сложившееся применение керосина стало считаться неперспективным. Даже возникло такое выражение — «керосиновый тупик», которым характеризуется нынешнее состояние ракетной техники, когда в космос все еще летают «ракетные поезда» образца 60-годов прошлого века.

Российская программа создания метановых РД

В.Д.Горохов
РH Союз-СПГ, топливо
кислород-метан (Прогресс)

Разработка российских метановых РД выполняется в КБХА (Конструкторское бюро химавтоматики, Воронеж) под руководством профессора Виктора Дмитриевича Горохова. Двигатель с 200-тонной тягой начал создаваться в 2002 году для ЕКА (Европейского космического агентства) по проекту «Волга». В 2006 году он получил российское название РД-0162.

Ракетный двигатель
РД-0162, топливо
кислород-метан (КБХА)

Двигатель РД-0162 строится по замкнутой схеме газ-газ с дожиганием окислительного генераторного газа (ДОГГ) и восстановительным безгенераторным контуром (жидкий метан испаряется в рубашке охлаждения камеры сгорания и подается на вход турбины). Давление в камере сгорания намного ниже, чем у энергомашевских РД-191 — всего 169 атм, но по проекту обеспечиваются более высокие характеристики — земной УИ 321 с, высотный УИ 356 с, масса РД 2100 кг, земная тяга 2000 кН (~204 тс). Метановый ракетный двигатель рассчитан на 25, по другим данным — на 50 или даже 100 полетов. Для обеспечения отказоустойчивости в составе 4-двигательной установки он форсируется по тяге до 133%.

К настоящему времени испытан 40-тонный демонстратор РД-0162Д2А и ведется разработка 85-тонного метанового демонстратора РД-0177. По этому перспективному РД проведены испытания модельного газогенератора с форсуночными головками многократного использования. Это демонстратор создается для проекта «Крыло-СВ», предусматривающем создание многоразовой ракеты легкого класса с крылатой первой ступенью. А серийный РД-0169 с тягой 100 тонн планируется применить в многоразовой РН среднего класса Союз-СПГ.

Что касается 200-тонного РД-0162, то он продолжает оставаться конечной целью работ и предназначается для более мощных ракет-носителей тяжелого и сверхтяжелого класса.

Перспективная ракета-носитель Союз-СПГ

Работы по РН Союз-СПГ начинаются сейчас и для нее пока еще даже не определен окончательный облик. Поэтому мы даем ее условное изображение. Известно, что ракета будет двухступенчатым тандемом. На ее первую ступень будут установлены пять метановых РД-0169 суммарной тягой 500 тонн. Она будет садиться «по Маску» — вертикально на центральном РД. Вторая ступень оснащается одним РД-0169 с высотным соплом и тягой 95 тонн.

Стартовая масса РН Союз-СПГ запланирована около 360 тонн, а предполагаемая максимальная полезная нагрузка составит 12.5 тонн — очевидно, без учета затрат топлива на возвращение первой ступени, которые оцениваются в 6% от ее общей заправки в 220 тонн. Вторая ступень невозвращаемая, но ее предложено сделать с очень высоким конструктивным совершенством КС=14 (5.5 тонн при заправке 77 тонн).

Скорее всего, реальная ПН Союз-СПГ будет ближе к 10 тоннам, что тоже вполне достаточно — т.к. данная РН предназначена для замены устаревших средних РН Союз-2, ПН которых составляет около 8-9 тонн. Первый полет этой средней ракеты намечен на 2025 год. По своим габаритам и стартовой массе РН Союз-СПГ подходит для применения c «морского старта«. В пользу инновационной ракеты говорит малое число ракетных блоков (2 против 6 у Союза-2) и высокий коэффициент повторного использования первой ступени. Поэтому она выглядит очень перспективной в плане снижения стоимости выведения даже в сравнении c Falcon-9.

Американский метановый РД ВЕ-4

Ракетный двигатель ВЕ-4 (Blue Engine-4) начали создавать в 2012 году в компании Blue Origin, принадлежащей хозяину Amazon мультимиллиардеру Джеффу Безосу. В нем также применяется популярная замкнутая схема ДОГГ, а проектные параметры таковы — земная тяга 250 тс и давление в камере сгорания 132 атм. УИ не разглашается, поскольку они у данного РД сравнительно невысокие, а основная цель разработки состоит в обеспечении высокой надежности работы. Заявленная кратность использования РД ВЕ-4 — 25.

Двигатель BE-4 предназначен для применения на первой ступени собственной тяжелой ракеты Безоса New Glenn 45-тонного класса (вторая ступень — водородная) и для применения на первой ступени РН Vulcan Centaur, создаваемой на замену РН Atlas-5 с российским РД-180. Поэтому этот будущий РД играет ключевую роль в американской программа «импортозамещения» — с одной стороны, он обеспечивает независимость от поставок российских РД-180, а с другой — участвует в некой альтернативе керосиновым ракетам SpaceX. В 2019 году были построены стенды для испытаний данного РД при тяге 2200 кН, т.е. по факту это самый мощный на данный момент метановый РД.

Ракетный двигатель BE4, топливо кислород-метан

Только что первый демонстратор BE-4 поставлен в ULA (United Launch Alliance) для проведения намеченных на 2021 год испытаний в составе РН Vulcan Centaur. Еще один РД BE-4, необходимый для первой ступени этой ракеты будет поставлен в июле. Полезной нагрузкой для дебютного старта ракеты Vulcan Centaur выступит лунный посадочный модуль Peregrine от компании Astrobotic.

Ракета-носитель Vulcan Centaur

Ракета Vulcan Centaur создается американскими ракетчиками по традиционному для них принципу «сборной солянки». Она имеет метановую первую и водородную вторую ступень, а также может использовать до 6 твердотопливных ускорителей (ТТУ). Диаметр ракеты составляет 5.4 метра, высота с обтекателем 61.2 метра, стартовая масса — от 226.3 до до 546.7 тонн. Полезная РН Vulcan Centaur в зависимости от наличия и числа ТТУ составляет 10.6-27.2 тонны на низкой околоземной орбите (НОО) и 2.9-13.6 тонн на геопереходной орбите (ГПО).

Ракета-носитель Vulcan Centaur, топливо кислород-метан-водород после отделения ТТУ

На первой метановой ступени ракеты Vulcan Centaur применяется пара новых РД BE-4, а на второй водородной ступени трудится пара ветеранов американского ракетостроения — РД RL-10. Каждый ТТУ GEM-63XL от Northrop Grumman имеет массу 53.4 тонны и тягу 206.6 тонн.

Надо сказать, что создание ракет и ракетных двигателей пока не приносит доход мультимиллиардеру. Его многоразовая суборбитальная ракета Blue Shepard создавалась для туристических суборбитальных полетов и была испытана — но не совершает рейсы с пассажирами. Почему-то желающих слетать на Гавайи оказывается неизмеримо больше, чем желающих побывать на высоте 100 км в космосе. И у орбитальной программы перспективы тоже непонятно какие, поскольку ракетные проекты Безоса пока выглядят, как частное приложение к американской государственной космической программе.

По базовой ПН ~10 тонн Vulcan Centaur аналогична будущей российской метановой РН Союз-СПГ, а с навесными ТТУ будет конкурировать с тяжелой Ангарой-А5. Создатели обещают, что их детище будет дешевле «Ангары», но все дело в том, что «Ангара» сама по себе является самой дорогой в своем классе. Тем не менее, именно Vulcan Centaur собирается стать первой ракетой, которая улетит в космос на метане.

Ракета-носитель New Glenn

А также Vulcan Centaur проложит путь к созданию тяжелой частной ракеты New Glenn, в первой ступени которой будут установлены уже 7 РД BE-4 и будет реализована полноценная многоразовость. На второй водородной ступени применяется ваккумная версия РД BE-3, разработанного ранее для суборбитальной ракеты New Shepard. Ввиду большой тяговооруженности первой ступени ТТУ ускорители ракете New Glenn не потребуются. Высота ракеты составит 98 метров, диаметр — 7 метров, полезная нагрузка на НОО — 45 тонн, на ГПО — 13 тонн.

Raptor для Super Heavy и Starship

Метановый РД Raptor и ракета, для которой он предназначен — это самый амбициозный проект, который во многом напоминает лунную ракету H-1 Л3 С.П.Королева, но, конечно, на более высоком техническом уровне. Как в свое время НК-15, Raptor создается для получения предельных характеристик по эффективности. Это связано с необходимостью создать двухступенчатую сверхтяжелую ракету с обеими возвращаемыми ступенями — разгонной ступени Super Heavy и орбитального космолета Starship. А цель создания системы Super Heavy/Starship состоит — ни много ни мало — в колонизации Марса! Конечно, для более близких лунных дел и на околоземных орбитах она тоже должна пригодиться.

РД замкнутой схемы с ДОГГ
РД с полной газификацией

Raptor — это ракетный двигатель с предельными характеристиками, построенный по самой сложной схеме с полной газификацией компонент. У этого РД два газогенератора и две турбины, первая из которых работает на окислительном газе c избытком кислорода, а вторая — на восстановительном газе с избытком метана. Такая схема позволяет поднять надежность по сравнению с схемой ДОГГ за счет исключения протечки газа вдоль общего вала турбины, на котором расположены насосы окислителя и горючего.

Давление в камере сгорания планируется поднять до рекордных 296 атмосфер. Целевой земной УИ составляет 330 с, УИ с высотным соплом — 380 с, что весьма близко к параметрам, обеспечиваемым водородным РД J-2 ракеты Сатурн-5. Проектная масса РД «Раптор» составляет 1500 кг, земная тяга — 2000 кН (~204 тс). В 2019 году было достигнуто давление 254 атм — это чуть выше, чем у знаменитых российских ракетных двигателях РД-180, что стало предметом особой гордости инженеров SpaceX. Тяга «Раптора» составила 172 тонны.

Для «Раптора» заявлен высокий коэффициент повторного использования — 50 и фантастические показатели экономической эффективности. Новый ракетный двигатель SpaceX должен быть в 12.5 раза дешевле вдвое более мощного и более простого по конструкции РД-180 и за счет многоразовости быть в 330 раз дешевле в эксплуатации.

Оценивая представленные SpaceX данные по цене Raptor, надо учитывать, что все ее ракетные двигатели «торгуются» только внутри самой компании — поэтому Маск может назначать им любую цену, которую считает подходящей для пиара своей космической программы и деморализации своих конкурентов.

Заметим также, что методы работы SpaceX в корне отличаются от принятой в космической отрасли широкой кооперации c переговорами о ценах. Маск ни с кем не кооперируется и, в том числе благодаря этому, может держать низкие цены на свои услуги. И раз SpaceX продает исключительно конечную услугу по полетам в космос, то «сведения» из ее внутренней бухгалтерии не имеют содержательного смысла.

Центральные РД Raptor на космолете Starship фото SpaceX

Сверхтяжелая ракета Super Heavy и орбитальный космолет Starship

Сверхтяжелая ракета Super Heavy (прежде — Big Falcon Rocket, BFR), имеет длину 70 метров, диаметр 9 метров и стартовую массу 3680 тонн, из которых 3400 тонн приходится на топливо. На ней планировалось установить 37 двигателей Raptor, из которых 7 центральных оснащаются системой управления вектором и величиной тяги, а 30 периферийных РД закрепляются жестко. Но последнее обновление планов в мае 2020 года предусматривает только 31 РД, тягу каждого из которых решено поднять до 250 тонн.

Космолет Starship имеет длину 50 метров и стартовую массу 1320 тонн, из которых 1200 тонн приходится на топливо. На нем установлены 3 РД Raptor с земными соплами и 3 РД Raptor с высотными соплами. Наличие РД c земными соплами существенно, потому что космолет садится на Землю в режиме вертикального торможения двигателями. Проектная полезная нагрузка на низкой околоземной орбите составляет 100 тонн, что в 4 раза превосходит возможности американской частично многоразовой системы Space Shuttle и всех ныне существующих ракет-носителей, за исключением созданной в той же компании SpaceX ракеты Falcon Heavy. Возращаемый на Землю груз может составлять до 50 тонн. Объем грузового отсека Starship составляет 1100 куб. метров — это в 3 раза больше чем у Боинга-747 и МКС.

Считается, что появление Starship сделает МКС рудиментом уходящей эпохи одноразовых носителей. Огромный космолет является сам себе носителем и полноценной орбитальной станцией. Как летающий космический дом, он будет находиться на орбите столько времени, сколько потребуется для работы продолжительной экспедиции — а по завершению ее работы доставит свой экипаж на Землю.

Отделение Starship Crew от носителя BFR (скетч SpaceX 2018 года)

Суммарная стартовая масса системы Super Heavy/Starship составляет ровно 5000 тонн, без учета полезной нагрузки — в 2.5 раза больше, чем у Space Shuttle. Суммарная тяга всех РД на старте составляет 7342 тонны. А суммарная длина — 120 метров, что на 10 метров выше комплекса Сатурн-Аполлон. Естественно, что для столь грандиозной ракеты надо создавать специальные стартовые площадки. А для обеспечения возвращения всех ступеней на Землю принято беспрецедентное техническое решение — они делаются из тугоплавкой нержавеющей стали, поэтому блестят на Солнце, как огромные самовары и вообще походят на ракеты из наивных фантастических фильмов начала 20-го века. Теплоизоляция Starship во время входа в атмосферу будет делаться по новому методу с помощью газовой подушки из метана.

Строительство одной из стартовых площадок для Super Heavy

Луна, Марс и далее везде

Как мы уже упоминали, конструкция и параметры Super Heavy/Starhip заставляет вспомнить неудавшийся проект С.П.Королева — лунно-марсианскую ракету H1-Л3. Та же самая исходная марсианская цель, нестандартная конструкция и аномально большое число высоконапряженных РД с предельными характеристиками. Кажется, что для достижения оптимальной надежности лучше использовать ракету полегче, как, например, уже обсуждавшуюся выше New Glenn.

Скетч двигательной установки Super Heavy
(stanley creative)

Но есть и отличия в лучшую сторону, которые позволяют рассчитывать на успех столь амбициозного проекта. Создатели H1-Л3 работали в условия тотальной спешки и нехватки средств, не имея возможности протестировать первую ступень сверхтяжелой ракеты на стенде и даже сделать контрольный прожиг ее двигательной установки на стартовой площадке. В отличие от советских инженеров 60-х годов, Маск имеет возможность многократно испытать свою многоразовую технику перед первым полетом на орбиту, в том числе путем «подскоков» в беспилотном режиме с управляемой посадкой на Землю.

В 2019 году именно так испытали уменьшенный прототип Starship — т.н. Starhopper («звездный кузнечик»). Это смешной аппарат стал первым реактивным аппаратом, который оторвался от земли на метановом горючем! Вот так — давно уже ездим по Земле в автомобилях на метане, но в воздух поднялись — впервые!

Сейчас прототипы Starship проходят испытания, в ходе которых уже было разрушено пять аппаратов. В основном это были испытания на прочность путем накачки баков жидким азотом. В мае 2020 года была предпринята попытка первого испытательного полета Starship на высоту 150 метров, которая закончилась взрывом. Дальнейшие достижения должны быть следующими:

  • Полет в космос грузового беспилотного варианта Starship Cargo намечен на 2022 год. К этому времени должна быть готова и испытана ракета SuperHeavy, доставляющая Starship в верхние слои атмосферы и обеспечивающая его первоначальный разгон.
  • Уже в 2024 году пилотируемый Starship Crew планировалось задействовать в американской лунной программе Artemis.
  • Под эту же лунную программу создается специальный вариант Starship для полетов между поверхностью Луны и окололунной орбитой.
  • Впоследствии должен появиться Starship Tanker для дозаправки топливом на орбите — его дедвейт составит 150 тонн жидкого кислорода и метана, а до этого в роли заправщиков будет выступать остальные модификации Starship.

Но все эти сроки следует воспринимать с поправкой на последующую коррекцию — так, всего несколько лет назад Маск обещал полет на Марс уже в 2022 году, о чем сейчас не может быть и речи.

О надежности Starship

Орбитальная ступень Starship будет использоваться SpaceX для полетов к Луне и Марсу, а ее размеры и грузоподъемность позволяют разместить там экипаж до 100 человек. При этом, как и на «шаттле», не предусматривается система аварийного спасения, т.е. ставка снова делается на высокую надежность американской техники.

Да, американцы снова собирается наступить на те же самые шаттловские грабли! Space Shuttle, на котором в двух катастрофах погибло 14 человек, был опасной системой, но SuperHeavy/Starship выглядит не менее проблемно. Что стоит Маску сократить экипаж Starship Crew, скажем, до 50 человек, но оборудовать его катапультируемой капсулой с абляционным покрытием и парашютной системой? Неужели мы все уже переселяемся на Марс и надо отправлять туда по 100 человек за раз? На Марсе холодно, пыльно и маловоздушно, для жизни человечества надо проводить его длительное терраформирование — а до этого вполне хватит небольшой колонии.

Тем не менее, Маск намерен сделать полеты для колонизации Марса даже более дешевыми, чем полеты на околоземную орбиту. И он настаивает на том, что система аварийного спасения его будущему космолету не нужна. Наверное,.. его все-таки заставят пойти на попятную, поскольку допуск к космическим полетам человека выдается в НАСА. А вопрос о статистической надежности Starship будет проясняться во время его эксплуатации. В любом случае, надо дождаться его первых орбитальных полетов, которые могут состояться уже в середине 20-х годов.

Видео по марсианской программе SpaceX (на англ. языке)

От космолетов к космическим автомобилям

Мы рассмотрели три линии по созданию метановых космических ракет будущего, две из которых осуществляются уже сейчас, а третья — Союз-СПГ намечена для разработки в 20-е годы.

Будущее российского проекта зависит от многих факторов. Его размерность, выбранная по принципу «design to cost» попадает в наиболее востребованную нишу на рынке пусковых услуг, а полноценная многоразовость первой ступени придает суперконкурентные свойства. К сожалению, именно эта суперконкурентность делает Союз-СПГ весьма нежелательным гостем на мировом и внутреннем рынке. Судьба подобных проектов бывает очень непростой.

Не следует думать и о том, что у американских проектов все «долларом намазано». Свои специфические проблемы есть и в «системном» проекте Blue Origin, и во внесистемном проекте SpaceX. Тем не менее, ралли метановых проектов близится к своему завершению и неизбежному переформатированию работы космической отрасли — которое можно отсрочить в интересах отставших от жизни участников рынка, но нельзя отменить.

Заявленные характеристики метановых ракетных двигателей и будущих метановых ракет собраны нами в сводных таблицах.

Метановые РД

проектные
характеристики
РД-0162BE-4Raptor
масса2100 кг1500 кг
земная тяга204 тс250 тс204-250 тс
УИземной321 c330 с
высотный356 c380 с
давление в КС169 атм132 атм296 атм
кратность использования252550

Метановые РН

РНСоюз-СПГVulcan
Centaur
New
Glenn
Super Heavy
Starship
1 ступень
число и
тип РД
5 РД-
0169А
2
BE-4
7
BE-4
31
Raptor
тяга500 т500 т1750 т7750 т
масса конструкции25.4280 т
масса топлива220 т3400 т
КС8.6612.14
2 ступень
число и
тип РД
1 РД-
0169B
2
RL-10
2
BE-3U
3+3V
Raptor
тяга95 т21.6 т144.8 т
масса конструкции5.5 т120 т
масса топлива77 т1200 т
КС1410
характеристики РH
стартовая масса359.4 т226.3 т5000 т
длина48.8 м61.2 м98 м120 м
диаметр4.1 м5.4 м7 м9 м
ПН на НОО12.5 т10.6 т45 т100 т

В будущем автомобильная и космическая техника будут работать на одном и том же топливе — СПГ. Здесь сходятся воедино требования экологической чистоты и экономической эффективности. Вероятно, что многоразовые метановые ракеты проторят дорогу для создания частной космической техники. Например, Starship по своей грузоподъемности можно считать огромным космическим «БелАЗом«, только без колес. Есть проекты куда меньшего масштабы, например, Крыло-СВ с крыльями и колесами для посадки на аэродром. Еще больше могут походить на автомобили лунные лэндеры-квадроциклы, о которых мы тоже напишем.

В общем, Маск недаром запустил свою «Теслу» к орбите Марсу. Шальная выхода миллиардера является намеком о том, куда движется мир. Вслед за нынешними летающими автомобилями когда-нибудь появятся — космические автомобили, как практичная техника для полетов в космос.

Сокращения:
РН — ракета-носитель
РД — ракетный двигатель
УИ – удельный импульс
ПН — полезная нагрузка
КС — конструктивное совершенство
ТНА — турбонасосный агрегат
ДОГГ — дожигание окислительного генераторного газа
ТТУ — твердотопливный ускоритель

С другими статьями Автомалиновки по освоению космоса можно познакомиться здесь:
Беспилотный космический грузовик от ГРЦ Макеева — проект КОРОНА
Автомобили будущего сегодня и какими они будут: электромобиль-планетоход
Американское прошлое и российское будущее космодрома «Морской старт»
Космические гонки XX и XXI века, часть 1: полет Гагарина
Космические гонки XX и XXI века, часть 2: несбывшаяся мечта Королева
Космические гонки XX и XXI века, часть 3: лунные автоматы СССР
Космические гонки XX и XXI века, часть 4: лунные экспедиции Америки
Космические гонки XX и XXI века, часть 5: время крылатых гигантов
Космические гонки XX и XXI века, часть 6: возвращение на Луну
Космические гонки XX и XXI века, часть 7: сверхтяжелые ракеты России
Космические гонки XX и XXI века, часть 8: частный космос Илона Маска

Все материалы на космическую тематику

https://www.ao.by/articles/articles_1454.html

1681. ПАО РКК «Энергия» перетягивает одеяло на себя и душит российских партнеров.

Полетит ли наш «Орел» к Луне?

Корабль Crew Dragon уже в космосе, как же обстоят дела у отечественных разработок? Как известно, космический корабль «Союз» достался России в наследство от Советского Союза, базовая его модификация была создана в 1967 году.

Последние десятилетия показывают глубокий системный кризис в космической отрасли России. Четкой программы нет, сроки разработок постоянно переносятся и отодвигаются, финансирование выделяется по непонятным алгоритмам, и, скажем так, не совсем прозрачно. Есть ли у России шанс не потерять космос окончательно?

Модель космического аппарата "Орел", создаваться будет один универсальный космический корабль вместо кораблей двух типов. Фото: iz.ru
Модель космического аппарата «Орел», создаваться будет один универсальный космический корабль вместо кораблей двух типов. Фото: iz.ru

Главной российской космической надеждой сейчас является корабль «Орел», который изначально назывался «Федерация». Почему потребовалось менять название? Глава «Роскосмоса» пару лет назад заявил, что корабль должен иметь другое, мужское имя вместо женского «Федерация». Хочется верить, что название — это единственная проблема строящегося корабля.

К истории создания корабля «Орел»

Пилотируемый корабль «Орел» разрабатывается для полетов к Луне. Разрабатывается уже 11 лет, с 2009 года.

Фото: ferra.ru
Фото: ferra.ru

Даты запуска назывались разные, на сегодняшний день они такие: первый полет «Орла» в беспилотном режиме к МКС должен состояться в сентябре 2024 года, пилотируемый — через год, в сентябре 2025 года.

Хотя это будут по большому счету только испытания — «Орел» предназначен, прежде всего, для полетов за пределы околоземных орбит — к Луне, к Марсу. На околоземную орбиту запускать такой корабль слишком дорого.

В 2019 году началось изготовление корпуса первого экземпляра космического корабля нового поколения «Федерация». Фото: habr.com
В 2019 году началось изготовление корпуса первого экземпляра космического корабля нового поколения «Федерация». Фото: habr.com

В случае успешных испытаний в 2028 году «Орел» примут в эксплуатацию. В 2029 году запланирован облет Луны, 2030 году — высадка космонавтов на спутник. Для этих полетов нужна сверхтяжелая ракета, но с ней очень долго и витиевато определялись. Хотя вся история космонавтики показывает, что космический корабль проектируют под ракету. Поэтому, насколько может успешно разрабатываться «Орел» без понимания характеристик ракеты, которая будет его транспортировать, пока непонятно.

Характеристики корабля

«Орел» — пилотируемый космический корабль со спускаемым модулем. Кабина корабля рассчитана на 6 космонавтов (при полетах к Луне — на 4 космонавтов). Продолжительность автономного полета — до 30 суток. Длина корабля — 6,1 м, максимальный диаметр корпуса — 4,5 м. Объем герметичного отсека — 18 куб.м.

Фото: nevskii-bastion.ru
Фото: nevskii-bastion.ru

Хочется верить, что несмотря ни на какие трудности, связанные с внутренними кадровыми проблемами РКК «Энергия», управленческими ошибками, корабль «Орел» все же будет создан. И пройдет все необходимы испытания. И на нем можно будет безопасно летать как минимум в ближний космос.

https://zen.yandex.ru/media/id/5e83712d5a232e3422b26698/poletit-li-nash-orel-k-lune-5ed926e4df920913e2cafcee?&utm_campaign=dbr

1634. ОСОБЕННОСТИ КОСМИЧЕСКОЙ БАЛЛИСТИКИ ЭКСПЕДИЦИОННЫХ КОСМИЧЕСКИХ КОМПЛЕКСОВ НОВОГО ПОКОЛЕНИЯ

Страница без номера «ОСОБЕННОСТИ КОСМИЧЕСКОЙ БАЛЛИСТИКИ ЭКСПЕДИЦИОННЫХ КОСМИЧЕСКИХ КОМПЛЕКСОВ НОВОГО ПОКОЛЕНИЯ» преобразована в учтенную запись сайта

Знаменитый конструктор, Сергей Павлович Королев совершил революционный прорыв в космос с использованием ракет. Однако, освоение Луны и дальнего космоса с помощью ракет встречает проблемы глобального масштаба, в частности, из-за масштабных потребностей в ресурсах и загрязнения и бесконтрольного изменения оптических характеристик верхних слоев атмосферы Земли: озоносферы, стратосферы и ионосферы.
Космические исследования, проведенные нашей цивилизацией не обнаружили на Земле, в космическом пространстве и на ближайших планетах остатков космических разгонных ступеней и аналогичного техногенного мусора других цивилизаций, что позволяет предположить, что на ракетах в космосе никто кроме нас не летает.
В ряде работ [1, 2, 3, 4], посвященных разработке наследия известного авиаконструктора Владимира Михайловича Мясищева, вашему вниманию предложен разработанный 30 лет назад, в рамках альтернативы Спейс Шаттлу [5], экспедиционный космический комплекс нового поколения (ЭККНП), являющийся развитием темы «М-19» [6], позволяющий сократить количество запусков космических ракет.
Триллионный оборот капиталов в производстве и модернизации одноразовых космических ракет отвлекает финансовые средства от создания многоразовых космических комплексов нового поколения. А между тем уже сформировалось неосознанное новое направление полностью многоразовых моноблочных космических комплексов. По мнению автора, к ним можно отнести, наряду с суборбитальным самолетом Мясищева М-19 и ЛКА МГ-19, проекты «Х-33», «Аспен», «Хотол» и «Скайлон». Дело в том, что совсем не обязательно отделять полезный груз этих кораблей на опорной орбите. Можно разместить груз, например на этажерке-транформере, размещенной под створками грузового отсека. Развернув целевое оборудование на орбите можно проводить необходимые исследования непосредственно с борта корабля, не спуская его с орбиты до выполнения задачи. Мало того можно, как уже предлагалось в работах [1, 2, 3, 4], дозаправить корабль топливом на орбите до полных баков такими же кораблями-заправщиками и направиться для выполнения задач в дальний космос на электроракетных двигателях. Сравнение этих направлений в развитии космонавтики, названных «революционный прорыв и эволюционное развитие» показано на рисунке 1.

Слайд1

Рисунок 1. Эволюционный и революционный пути развития космонавтики. См. доклад

В связи с часто задаваемыми вопросами оппонентов, в очередной работе данного цикла вашему вниманию предлагаются особенности космической баллистики ЭККНП при реализации Лунной экспедиции, экспедициях облета Марса или Венеры, показывающие достижимые для ЭККНП области в солнечной системе.
Использованные в качестве исходных данных, оценки ряда авторов, исследовавших физические проблемы космической тяговой энергетики и баллистики, приведенные в работах [7, 8, 9,10], обобщены в таблицах 1, 2 и 3.
Минимальная характеристическая скорость для манёвров перелета в пространстве небесного тела может быть определена из следующих соотношений.

Слайд2

Минимальная характеристическая скорость для такого манёвра
определяется из соотношения:

ΔVспд = VkVo

Используем в качестве исходных данных общеизвестные траекторные и физические данные Земли и Марса, приведенные в таблице 2 [7, 8], рис. 2 и 3. Схема разгона с радиационно безопасной орбиты (РБО) на отлетную
траекторию с помощью ЯЭДУ приведена на рис. 4.
Полученные оценки характеристических скоростей маневров и
соответствующие массовые характеристики Мо и Мк по этапам полета, в зависимости от используемых на этих участках двигателей комбинированной энергодвигательной установки (Wо-скорость истечения, м/с), представлены в таблицах 3, 4, 5.

Слайд3
Слайд4
Слайд5+
Слайд6
Слайд7
Слайд8
Слайд9

Из таблиц 3-5 видно, что экспедиции на Луну, облета Марса и Венеры обеспечиваются при стартовой массе ЭККНП 500 тонн без дополнительной дозаправки у планет-целей.
Экспедиция на Марс, рис. 2 и 3, с посадкой возможна с использованием пары ЭККНП для обеспечения в полете искусственной гравитации. При этом при посадке на Марс обоих кораблей, потребуется добыча на Марсе 120 тонн топлива (водорода), а при посадке одного корабля, для возвращения к Земле могут быть использованы остатки топлива корабля, ожидающего на орбите Марса.

Автор выражает признательность специалистам Алексею Иванюхину и Дмитрию Шульгину за помощь в подготовке исходных данных к докладу.

Литература

1) Денисов В.Д. На Марс на одноступенчатом корабле. Доклад на чтениях, посвященных памяти Гагарина Ю.А., г. Гагарин, 2012 г.
2) Денисов В.Д. Дело Мясищева В.М. живет. Материалы для музея Мясищева В.М. в г. Ефремов, 2013 г.
3) Денисов В.Д. Дело Мясищева В.М. живет. Доклад на чтениях, посвященных памяти Гагарина Ю.А., г. Гагарин, 2013 г.
4) Денисов В.Д. Экспедиционный космический комплекс нового поколения, Доклад на Королевских чтениях, 2013 г.
5) История разработки многоразовой транспортно-космической системы (МТКС) «Спейс Шаттл», интернет ресурс по материалам книг: «SPACE SHUTTLE: The History of Developing the National Space Transportation System», Dennis R.Jenkins, 1996 и «Мировая пилотируемая космонавтика: история, техника, люди», коллектив авторов под ред. Ю.М.Батурина, М.:РТСофт, 2005 — 752 с.:ил.
6) А.А. Брук, К.Г. Удалов, Иллюстрированная энциклопедия самолетов ЭМЗ им. В.М. Мясищева (т. 8, 9), АвикоПресс, 2005.
7) Бурдаков В.П. и Данилов Ю.И., Физические проблемы космической тяговой энергетики, М, Атомиздат, 1969.
8) Бурдаков В.П. и Зигель Ф.Ю. Физические основы космонавтики. Учебное пособие для авиационных ВУЗов, М., Атомиздат, 1975.
9) Пилотируемая экспедиция на Марс. Под ред. А.С. Коротеева. Российская академия космонавтики им. К.Э Циолковского, 2006.
10) M. Konstantinov, V. Petukhov. The Analysis of Required Characteristics of Electric Power Plant and Electric Propulsion at Realization of One Mission of Manned Expedition onto Mars Space Propulsion 2010 1841662, San Sebastian, Spain, 2010.

Денисов Владимир Дмитриевич, denisov-vd@mail.ru

1633. ПРОБЛЕМЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ МЕЖПЛАНЕТНЫХ ЭКСПЕДИЦИЙ (НА КОСМИЧЕСКОМ КОРАБЛЕ С КОМБИНИРОВАННОЙ ЯДЕРНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКОЙ)

Страница без номера «ПРОБЛЕМЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ МЕЖПЛАНЕТНЫХ ЭКСПЕДИЦИЙ (НА КОСМИЧЕСКОМ КОРАБЛЕ С КОМБИНИРОВАННОЙ ЯДЕРНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКОЙ) преобразована в учтенную запись сайта, одноименная страница сохранена из-за некорректного переноса громоздких таблиц

Денисов Владимир Дмитриевич, denisov-vd@mail.ru
Ошкин Алексей Евгеньевич, kerava312@mail.ru

С.П. Королев сумел использовать боевую ракету для прорыва в космос и сделал нашу страну первой космической державой на Земле. Однако необходимая для колонизации Луны и Марса стартовая масса космических ракет, поражает своими масштабами, несмотря на то,  что более пятидесяти лет известны и другие технологии и концепции реализации задач освоения дальнего космоса, недоступные химическим ракетам.

Джонатан Свифт в своих художественных произведениях описал летающие в магнитосфере острова. Эту идею выдвигал и прорабатывал Цандер и другие пионеры космонавтики (см. А. Казанцев. «Донкихоты вселенной»). Денисов В.Д. тоже в молодости увлекался этим направлением и получил авторское свидетельство на «Летательный аппарат на электромагните», выступал на научно-технической конференции ЦКБМ(ф). Известны варианты комбинированных кораблей построенных на принципах электромагнита и инерциоида (см. Серл, Рощин и Годин [17]). Однако неизвестны не только факты завершения этих работ, но и не достигнуто полное описание и понимание действующих здесь физических принципов.

При описании проектов экспедиций на Марс обычно описывают лишь экспедиционный комплекс, масса которого к настоящему времени сократилась до 500 тонн. А началось с Вернера фон Брауна [12,7], который в послевоенные годы похвалялся за 100 миллионов долларов отправить экспедицию на Марс. При этом масса его экспедиционного комплекса на высококипящем топливе по его проекту составляла 9000 тонн, что потребовало бы стартовать с Земли миллиону тонн ракет-носителей. Заметим, что МКС, собираемая на орбите более 15 лет весит около 500 тонн. Это говорит о бредовости и экологической опасности амбиционного проекта Брауна. Пора строить совершенные космические корабли, не требующие ракет.

В восьмидесятых годах прошлого века в Филях рассматривался проект суборбитального самолета В. Мясищева МГ-19, рис. 1. КБ «Салют», защитил проект пятью авторскими свидетельствами на корабль и его составные части. Казалось бы, в отличие от магнитолетов и энерциоидов, этот корабль строился на всем готовом и реализация его близка, однако десятилетия запросов средств на его создание по министерским кабинетам не увенчались до сих пор не только реализацией, но и стартом проекта, несмотря на его эффективность.

1_МАКК на основе суборбитального самолета МГ-19

Рис.1. МАКК на основе суборбитального самолета МГ-19.

Варианты этого проекта описаны в работах [1, 2, 3, 4, 5 ,6, 7]. Конечно это не единственный вариант, есть и другие. Необходимо лишь встать на этот путь развития и путем постоянной модернизации комплекса, шаг за шагом повышать совершенство проекта, аналогично компьютерам, которые были размером с небоскреб, а теперь умещаются на ладони. «Дорогу одолеет идущий». Можно многократно десятками лет критиковать проект и загонять человечество из одного тупика в другой, так и не решив проблему. А всем известно, что без освоения ядерной энергетики в космосе, люди дальше Луны не улетят и от астероидов не защитятся.

В КБ «Салют» составные части этого проекта разрабатывались около пятидесяти лет в рамках тем М-19, М-30, М-60, МГ-19, Метеорит, Полюс, Байкал, Бумеранг, МРКС, ТЭМ. Здесь созданы ракеты всех классов, включая крылатые, созданы космические разгонные блоки, в том числе на криогенных компонентах топлива, созданы модули пилотируемых космических станций, разработаны многоразовые ракеты-носители и созданы космические аппараты нескольких типов. Накоплены знания и создан коллектив специалистов способный творить чудеса, сложились уникальные условия для реализации суперинновационных проектов…

Острой проблемой в данном проекте, не решенной нашей цивилизацией, является проблема радиационной безопасности. Эта проблема относится и к эксплуатации ядерных электростанций и атомных ледоколов и атомных подводных лодок, постоянно бороздящих просторы земных океанов. Дело в том, что во всех перечисленных объектах, поработавшие (комбинированные) ядерные двигатели и энергоустановки, продолжают «светиться» более 500 лет и после выключения. Это обусловило отказ от дальнейшей разработки ядерного экспедиционного космического комплекса до решения вопросов радиационной безопасности экипажа, послеполетной дезактивации. Эта проблема злободневна для всех действующих ядерных объектов. К тому же из-за дороговизны многоразовой комбинированной ядерной двигательной установки, многоразовый корабль данного класса проигрывает одноразовым ракетам в решении транспортных задач обслуживания низких околоземных орбит.

На современном уровне техники решение проблемы радиационной безопасности экспедиции может быть найдено на двух направлениях:

— увеличение радиационной защиты или уменьшение потребной мощности ядерных бортовых систем до приемлемого уровня,

— создание безлюдных производств для утилизации ядерных объектов до наночастиц, с последующей их массоспектрометрической сортировкой и целевым использованием полученного сырья.

Полученные в 80-х годах результаты НИР легли в основу разработки Моноблочного экспедиционного атмосферно-космического комплекса нового поколения, называемого в работах [1, 2, 3, 4, 5] как МЭКК или МАКК. Эти работы выявляют новое направление в развитии космонавтики – моноблочные атмосферно-космические комплексы (МАКК). По мнению авторов, к ним можно отнести, наряду с суборбитальным самолетом Мясищева М-19 и ЛКА МГ-19, Ту-2000 (Россия), проекты «Х-33» и «Аспен» (США), «Хотол» и «Скайлон» (Великобритания). Дело в том, что совсем не обязательно отделять полезный груз этих кораблей на опорной орбите. Можно разместить груз, например на этажерке-транформере, размещенной под створками грузового отсека. Развернув целевое оборудование на орбите, можно проводить необходимые исследования непосредственно с борта корабля, не спуская его с орбиты до выполнения задачи, аналогично Х-37В (США). При таком использовании моноблочный космический комплекс становится намного эффективнее [4].

Заметим, что к настоящему времени предложен безъядерный вариант многоразового космического комплекса «Скайлон» для выхода на низкую околоземную орбиту, использующий запасаемые в полете попутные ресурсы. Для межпланетного перелета на нем могут быть установлены создаваемые в настоящее время в рамках проекта транспортно-энергетического модуля (ТЭМ) ядерные электроракетные двигатели мегаваттного класса и осуществлена дозаправка комплекса на орбите необходимыми в экспедиции рабочими телами, рис. 2.

Скайлон
и его двигатель

Рис. 2. Скайлон и его двигатель

Структура радиационного воздействия на экипаж в экспедиции.

При разгоне на отлётную траекторию к Луне  и обратно, космический корабль пролетит дважды радиационные пояса Земли и пересечёт область орбит захоронения спутников. Также, в условиях глубокого космоса присутствует  радиация от ГКИ. При полётах КА на различные орбиты были зарегистрированы годовые дозы от облучения без защитных экранов (см. табл. 1).

Таблица 1. Значения поверхностной годовой поглощенной дозы,  [Гр-год] для стандартных орбит КА

Орбита КА и  высота орбитыЭлектроныПротоныСумма
Околоземная круговая орбита станции «Мир», 350 км6,4·102156,55·102
Околоземная круговая орбита МКС, 426 км1,17·103481,22·103
Геостационарная круговая, 35790 км5,36·1058,3·1068,8·106
ГЛОНАСС/GPS, круговая, 19 100 км3,80·1051,97·1062,35·106
Высокоэллиптическая, 500-39660 км2,57·1073,12·1075,69·107
Стандартная полярная орбита, круговая, 600 км2,45·1032·1022,65·103
Переходная орбита  «Земля-Луна» 400-384400 км.1,09·10111,09·10112,00·1011

Рассмотрим одну из схем марсианской экспедиции на российском корабле типа МГ-19. Сравнительные данные по радиационному воздействию от ядерной энергоустановки корабля на расстоянии 70 метров при включенном и выключенном состоянии и реликтового фона (солнечного ветра) в межпланетном полете к орбите Марса на экипаж в традиционном гермоотсеке типа ФГБ МКС с энергоблоком и теневой защитой ЯР, аналогичной ТЭМ, приведены в таблице 2. Эти данные получены с учетом закономерности ослабления свечения конструкции энергоблока после выключения, показанной на рисунке 3.

Закономерность ослабления свечения конструкции энергоблока после выключения

Рис.3. Закономерность ослабления свечения конструкции энергоблока после выключения

Таблица 2. Сравнительные данные по радиационному воздействию в типовой кабине экипажа экспедиционного корабля.

Этапы полета
12345678910
время полета, сут.Взлет 7ГВт, 30 минПосадка 4ГВт, 1часПерелет 2МВтОстановленный реактор 7ГВтМежпланетный перелет, СКЛ и ГКЛСолнечная вспышка, 6 часовПерелет через РПЗ, 12 часовПерелет через РПЗ с малой тягойСуммарная доза в Экспедиции, рад
Доза от реактора, радЕстественная радиация, рад
Полет к Марсу
500651417810500160030020300020229
128820(беспилотник)308
30Пребывание на Марсе756756
Возвращение с Марса к Земле
20 мин455455
5004000700016006010350016170
7Пересадка на СА(беспилотник)
Структура облучения
Тип потокаНейтроны, гамма-фотонынейтр + гамманейтр + гаммагаммасолнечные протоны  и гамма излучение галактическоесолнечные протоныпротоны, электроны ЕРПЗ, СКЛ, ГКЛпротоны, электроны ЕРПЗ, СКЛ, ГКЛ

В таблице 2 представлены результаты расчетов воздействия реактора, без дополнительной теневой защиты реактора, существенной снижающие суммарную поглощенную дозу.

Анализ результатов расчетов, приведенный в таблицах, показывает, что наибольшую радиационную опасность вносит работающий ядерный реактор, помимо этого сильный вклад в длительном пассивном полете вносит радиация от остановленного реактора маршевой установки, а так же радиация от солнечных космических лучей и галактических космических лучей. Особую опасность представляет собой солнечная активность, в период солнечной вспышки радиация может достигнуть 1000рад за время вспышки. При выведении на межпланетную траекторию с помощью двигателей малой тягой значительную опасность представляют собой естественные радиационные пояса Земли (ЕРПЗ). Это говорит о необходимости дополнительной радиационной защиты обитаемого отсека и аппаратуры от солнечных вспышек и от солнечных космических лучей и галактических космических лучей или использования на этом участке роботов.

В настоящее время приняты общие максимальные дозы облучения человека в рекомендациях МКРЗ от 1958г. и в нормах НАСА от 1991г [22,23].

На основании практики защиты от радиации в атомной промышленности приняты безопасные дозы облучения в течении для персонала атомных станций-0,05бэр., определена доза острого однократного облучения-25 бэр (бэр- безопасный эквивалент радиации). То есть, при превышении этой дозы возникают необратимые последствия, ведущие к первым признакам лучевой болезни. По этой оценке безопасной дозой облучения считается превышение нормируемой дозы в 10%. Поэтому ввели понятие «Эффективной дозы облучения» — Dэф.

Блэр [21] первым выдвинул рабочую гипотезу для эмпирического описания лучевого поражения на основе формулы:

Dэф. =D0[f+(1-f)*eßt] ,

 где D0-физически измеренная общая доза; f-величина необратимого поражения; ß-константа восстановления организма;  t-время после облучения (сутки).

Эта формула не учитывает динамику восстановления организма, поэтому безопасные дозы облучения рассчитывают с помощью более сложных формул. Кроме того, в реальном полёте на космонавта будут действовать все факторы космического пространства, следовательно, необходимо учитывать адаптацию организма, приведенную в таблице 3.

Таблица 3. Степень воздействия гамма-облучения на космонавта.

Доза, бэрДействие на человека
0-25Отсутствие явных повреждений
20-50Возможно изменение состава крови
50-100Изменение состава крови. Повреждения
100-200Повреждения. Возможна потеря трудоспособности
200-400Нетрудоспособность. Возможная смерть
400Смертность 50%
600Смертельная доза

Таблица 4 Значения дозовых лимитов облучения космонавтов при полетах различной продолжительности

Критический орган, глубина в тканиПродолжительность экспозицииДозовый лимит, эквивалентная доза, Зв
1Все телоПрофессиональный, за карьеру1,0 эффективная доза
2Кроветворные органы, (красный костный мозг), 5 смОднократное острое0,15
330 дней0,25
4Один год0,5
5Хрусталик глаза, 0,3 см30 дней0,5
6Один год1,0
7За карьеру2,0
8Кожа, 0,01 см30 дней1,5
9Один год3,0
10За карьеру6,0

Рассчитаны [23] предельно допустимые дозы облучения специально для космического полёта  и вероятности переоблучения. Для полёта в течении года предельно допустимая доза составляет 150 бэр. Для более продолжительных экспедиций предельно допустимая доза 275 бэр.

В этой оценке учитывался индивидуальный отбор космонавтов по сопротивляемости организма радиации и современные медицинские средства компенсации после  воздействия радиации на организм. Для защиты экипажа пилотируемых космических кораблей и аппаратуры  при полётах на Луну необходимо корпус кабины МЭКК оснащать радиационной защитой.

Конструкция радиационной защиты долговременных орбитальных средств

Рисунок 4 – Конструктивная схема ФГБ

Рисунок 4 – Конструктивная схема ФГБ

Для долговременных орбитальных станций особенность конструкции состоит в том, что между корпусом и зоной пребывания экипажа (ЗПЭ) располагаются все приборы, так как они увеличивают толщину защиты.

Защита от излучения реакторной установки

При наличии атомной двигательной  или энергетической установки  (ЯРД)  противорадиационная защита должна составлять не менее 50 г/см2. В таблице 3 представлены характеристики некоторых материалов ослабляющие воздействия гамма-излучения.

Таблица 5 Толщины слоев половинного ослабления гамма-излучения некоторых материалов

Материал защитыСлой половинного ослабления, смПлотность, г/см³Масса 1 см² слоя половинного ослабления
свинец1,811,320
бетон6,13,3320
сталь2,57,8620
слежавшийся грунт9,11,9918
вода18118
древесина290,5616
обедненный уран0,219,13,9
воздух150000,001218

Наиболее эффективно ослабляет гамма-излучение обедненный уран, чтобы снизить суммарную дозу от гамма-излучения на в 1000 раз необходимо обеспечить 2см толщины защиты, что соответствует 191 г/см2 массовой толщине защиты. Эту защиту необходимо расположить в непосредственной близости возле реактора (теневая защита РУ), так как размер защиты возрастает пропорционально квадрату расстояния удаления от реактора. В непосредственной близости к реактору масса такой защиты будет составлять 1,2 тонны.

В дополнение к теневой защите реактора могут служить и емкости с рабочим телом и другие пассивные конструкции корабля. Это облегчает решение весового уравнения комплекса на приемлемом уровне стартовых масс, тем более, что отдельные конструктивные элементы могут быть доставлены в догоняющих пусках заправщиков и спасателей.

Для защиты от нейтронного излучения могут служить емкости с запасами воды, так как она является хорошим материалом для экранирования. Вода может как отклонить потоки нейтронного излучения, так и существенно снизить .

Конструкция радиационной защиты МАКК

Для полётов к Луне в связи  с продолжительностью полёта не более недели можно ограничиться более лёгкой по исполнению пассивной защитой. Пассивную радиационную защиту в пилотируемых МАКК необходимо выполнить из слоя водной оболочки или подобрать из комбинации материалов. Исходя из материалов, которые исследовались в качестве радиационной защиты можно применить совмещённую с микрометеороидной  защитой (ММЗ) конструкцию в следующей комплектации:

  • — металлический пористый экран;
  • — экранновакуумная теплоизоляция (ЭВТИ);
  • — слой из полимерно-композиционных материалов;
  • — слой из стекла с глубинной зарядкой электронами;
  • — углепластиковый гермокорпус.

В качестве специальных мер защиты при работающем ядерном двигателе необходимо предусмотреть дополнительную теневую защиту (экран). Облегчает задачу зашиты комплексный подход в проектировании корабля. Компоновочные решения на 3D модели рисунка 5, показывают возможность использования для радиационной защиты экипажа смежных систем, в качестве которых могут служить и емкости с жидким водородом, длиной более 10 метров и другие пассивные конструкции корабля: перегородки, полезные грузы в грузовом отсеке: грейд-марсоход, горнодобывающий комбайн, роботы, запасы воды [4].

Рис. 5. 3D модель демонстратора МАКК типа МГ-19

Рис. 5. 3D модель демонстратора МАКК типа МГ-19.

Общая приведенная толщина перечисленных элементов на пути от энергоблока к отсеку экипажа может достигать 100-150 мм. Это облегчает решение весового уравнения комплекса на приемлемом уровне стартовых масс, около 500 тонн, тем более, что отдельные конструктивные элементы и запасы могут быть доставлены в догоняющих пусках заправщиков и спасателей.

Радиационная защита подразделяется на пассивную и активную. Активная радиационная защита в пилотируемых МАКК находится в теоретической и экспериментальной разработке. И при решении проблемы экранирования экипажа и бортовой аппаратуры МАКК от электромагнитных возмущений, активная радиационная защита на основе сверхпроводниковых электромагнитов может быть использована для защиты от радиации СВ и РПЗ.

Накоплен большой опыт по использованию пассивной радиационной защиты на атомных предприятиях, атомных подлодках и ледоколах.

Корпус из металла  при прохождении Галактического космического излучения, порождает вторичное излучение, опасное для здоровья космонавтов. Поэтому для полётов к Луне и Марсу потребуется дополнительная противорадиационная защита. Используя опытные данные по пассивной радиационной защите целесообразно использовать воду в качестве противорадиационного щита, совмещая с использованием  в системе СОТР и запасами воды в других системах, обеспечивающих жизнедеятельность экипажа.

Корпус из ПКМ из-за малого атомного числа Z=6 не порождает вторичного излучения, следовательно, при исполнении гермокорпуса из материалов  ПКМ  противорадиационная защита будет меньше по массе.

Обсуждается [13] использование противорадиационного убежища (РУ), как гарантированной защиты от СВ и РПЗ при толщине противорадиационной защиты не менее 30 г/см2. Для первой стадии полётов на орбиту Луны такой подход оправдан, поскольку, космонавты могут не покидать  РУ, так как полёт проходит в автоматическом режиме и продолжительность его невелика. Но при планировании в течение полёта ручных операций или выходов в открытый космос велик риск превышения допустимой дозы. Допустимая доза для экипажа КЛА при выполнении кратковременных полётов (до 30 сут.) составляет-15 бэр.

Расчёт допустимой дозы облучения  сделан  исходя из существующих нормативов для персонала атомных электростанций.  Для осуществления туристических полётов на орбиту Луны потребуется противорадиационная защита большей толщины. Вероятность переоблучения возникает не только во время СВ но и в течение выполнения работ на поверхности Луны или вне корабля на орбите. Поэтому, в таких экстремальных случаях в качестве дополнительной защиты применяют местную радиационную защиту более чувствительных органов, таких как, мозг и половые органы.

Исходя из информации в источнике:[8, 11], масса противорадиационного убежища должна составлять 100 тонн на объём — 10м3, при противорадиационной защите не менее 100 г/см2, следовательно, масса противорадиационного убежища  для экипажа численностью 6 человек при норме распределения объёма — 2м3 на каждого человека, может составлять 120 тонн, что неприемлемо для рассматриваемой концепции комплекса.

Эта оценка получена из расчёта 50% ослабления ГКИ. Расчёт сделан для длительных межпланетных полётов продолжительностью до 1000 суток.

Если мы хотим защититься от более проникающего состава ГКИ (высокоэнергетичных протонов и электронов), требуется противорадиационная защита до 500 г/см2. При наличии атомной двигательной  или энергетической установки  (ЯРД) противорадиационная защита должна составлять не менее 50 г/см2. Этот расчёт сделан при вероятности превышения допустимой дозы в 10 %.

Если же, снизить процент превышения допустимой дозы до 1%, то следует увеличить радиационную защиту ещё на 25 г/см2. Итого,  противорадиационная защита при превышении допустимой дозы в 1% должна составлять не менее 75 г/см2, что при площади поверхности радиационного убежища 20 кв. м потребует затрат 15 тонн массы. Возможность комплексирования этой массы с запасами воды, массой периферийного оборудования, микрометеороидной защиты и прочими смежными системами, свидетельствует о приемлемости таких затрат на МАКК.

Таблица 6. Суммарные характеристики излучений с учетом всех принятых мер защиты (дополнительный экран из урана, и защита из воды)

Этапы полета
12345678910
время полета, сут.Взлет 7ГВт, 30 минПосадка 4ГВт, 1часПерелет 2МВтОстановленный реактор 7ГВтМежпланетный перелет, СКЛ и ГКЛСолнечная вспышка, 6 часовПерелет через РПЗ, 12 часовПерелет через РПЗ с малой тягойСуммарная доза в Экспедиции, рад
Доза от реактора, радЕстественная радиация, рад
Полет к Марсу
5000,6514,17810,550302300395,329
10,2882(беспилотник)2,288
30Пребывание на Марсе0,7560,756
Возвращение с Марса к Земле
20 мин0,4550,455
500475061350418
7Пересадка на СА(беспилотник)
Структура облучения
Тип потокаНейтроны, гамма-фотонынейтр + гамманейтр + гаммагаммасолнечные протоны  и гамма излучение галактическоесолнечные протоныпротоны, электроны ЕРПЗ, СКЛ, ГКЛпротоны, электроны ЕРПЗ, СКЛ, ГКЛ

Выводы

Учитывая вышеизложенное, предлагается на последующих этапах моделирования моноблочного экспедиционного космического комплекса (МЭКК) рассмотреть следующие варианты повышения радиационной безопасности экспедиции:

  • Использование на участке выхода из гравитационного колодца планеты безядерного варианта комплекса типа «Скайлон»,
  • На участке межпланентного полета использование электроядерной энергодвигательной установки малой тяги,
  • Рассмотреть в качестве способа защиты частичное хранение кислорода и водорода на борту корабля в форме воды, размещаемой в баке, расположенном на оси кабина-реактор. На обратном пути с исследуемой планеты, водород также может быть частично запасен в форме воды. При этом после выхода из «гравитационного колодца» вода, по мере надобности, будет переводиться в кислород и водород, например путем электролиза с использованием имеющейся бортовой электростанции.

Снижение мощности энергоблока облегчает решение весового уравнения экспедиционного ядерного комплекса на приемлемом уровне стартовых масс, около 500 тонн.

Литература

1) В.Д. Денисов, На Марс на одноступенчатом корабле. Доклад на Академических чтениях, посвященных памяти Гагарина Ю.А., г. Гагарин, 2012.

2) В.Д. Денисов, Дело Мясищева В.М. живет. Материалы для музея Мясищева В.М. в г. Ефремов.

3) В.Д. Денисов, Дело Мясищева В.М. живет. Доклад на Академических чтениях, посвященных памяти Гагарина Ю.А., г. Гагарин, 2013 г.

4) В.Д. Денисов, Экспедиционный космический комплекс нового поколения. Доклад на Академических (Королевских) чтениях, Москва, 2013 г.

5) А. Ильин, И. Афанасьев. Королевские чтения 2013, ж. Новости космонавтики №.3, 2013, Москва.

6) В.Д. Денисов, Особенности космической баллистики экспедиционного космического комплекса нового поколения. Доклад на Академических (Королевских) чтениях, Москва, 2014 г.

7) В.Д.Денисов. Через тернии к звездам. Доклад на общественно-научных чтениях, посвященных памяти Гагарина Ю.А., г. Гагарин, 2014.

8) Перепелицкий Г.Н. Проекты самолетов «60», «30» и «60М» , Научно-технические разработки ОКБ-23 – КБ «Салют», Выпуск 1, под ред. Ю.О.Бахвалова, М, «Воздушный транспорт, 2006.

9)»Мировая пилотируемая космонавтика: история, техника, люди», коллектив авторов под ред. Ю.М.Батурина, М.:РТСофт, 2005 — 752 с.:ил.

10) А.А. Брук, К.Г. Удалов, Иллюстрированная энциклопедия самолетов ЭМЗ им. В.М. Мясищева (т. 8, 9), АвикоПресс, 2005.

11) Бурдаков В.П. и Данилов Ю.И., Физические проблемы космической тяговой энергетики, М, Атомиздат, 1969.

12) Пилотируемая экспедиция на Марс. Под ред. А.С. Коротеева. Российская академия космонавтики им. К.Э Циолковского, 2006.

13) В.Лапота. Начать строительство базы около Луны мы могли бы уже сегодня. Интервью Комсомольской правды А.Милкуса. 12.04.2014. и на сайте www.kp.ru

14) Коридор с Земли на Марс открывается. Газета. Вечерняя Москва 10-17 апреля 2014. М.Гладкова, А. Коц.

15) М.Набатникова. Где записаться на Марс. Газета Аргументы и факты. № 15.2014 и на сайте www.aif.ru

16) Модель космоса в 2-х томах, под редакцией проф. М.И. Панасюка и проф. Л.С. Новикова, Москва 2007г.

17) Интернет-ресурсы. Установка Рощина-Година. Машина Джона Серла. Экспериментальные исследования нелинейных эффектов в динамической магнитной системе, 2002.

18) Рекомендации МРКЗ от 1958 г.

19) Нормы НАСА от 1991 г., используемые на МКС.

20) Ю.Г. Григорьев. Радиационная безопасность космических полетов. М. Атомиздат. 1975 г.

21)Ушаков ИБ Результаты НИР Магистраль в 2013году и предложения на 2014 год, ИМБП, 2013.

22) Григорьев Ю.Г., Шафиркин А.В. НКРЗ. ГНЦ РФ-ИМБП РАН. Актуальные вопросы радиационной безопасности длительных космических полетов,  25-26 апреля 2011 Г., Дубна

23) Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг. Интернет-ресурс. Wikipedia, http://www.golkom.ru/kme/02/1-169-4-1.html

24) Первая медицинская помощь. — М.: Большая Российская Энциклопедия. 1994 г.

25) Энциклопедический словарь медицинских терминов. — М.: Советская энциклопедия. — 1982—1984 гг.

1632. ИСКУССТВЕННАЯ ГРАВИТАЦИЯ НА МНОГОРАЗОВОМ АТМОСФЕРНО-КОСМИЧЕСКОМ КОМПЛЕКСЕ В МЕЖПЛАНЕТНОЙ ЭКСПЕДИЦИИ.

Страница без номера «ИСКУССТВЕННАЯ ГРАВИТАЦИЯ НА МНОГОРАЗОВОМ АТМОСФЕРНО-КОСМИЧЕСКОМ КОМПЛЕКСЕ В МЕЖПЛАНЕТНОЙ ЭКСПЕДИЦИИ» преобразована в запись ленты сайта.

Денисов Владимир Дмитриевич, denisov-vd@mail.ru

Ошкин Алексей Евгеньевич, kerava312@mail.ru

На современном уровне техники, полет на Марс, облет Венеры и Марса по продолжительности превышают три года. В истории космонавтики такая продолжительность пассивных полетов человека в космосе еще не достигнута и жизнеспособность человека в такой экспедиции подвержена высокому риску.

Одной из проблем межпланетного полета человека является обеспечение минимально достаточных физических нагрузок на пассивном участке космического полета, обеспечивающих сохранение и поддержание биологических функций космонавта, в частности мышечного каркаса, вестибулярного аппарата и рефлекторно двигательных функций.

Известно несколько технологий, специального снаряжения и тренажеров, обеспечивающих минимально необходимые физические нагрузки на космонавта, поддерживающие его жизнеспособность в длительном полете в условиях невесомости, однако они не предотвращают у космонавта, вернувшегося на Землю, состояние инвалидности, требующей длительной реабилитации.

Радикальным способом предотвращения физической инвалидности космонавта в длительном полете является создание искусственной гравитации на борту пилотируемого космического корабля (ПКК). Простейшим способом обеспечения искусственной гравитации на ПКК является использование центробежных сил на вращающейся связке модулей [11-15].

Важными проблемами такой технологии являются обеспечение:

— безрасходных, по бортовой массе, способов раскрутки/остановки связки модулей,

— обеспечение параметров вращения, минимально достаточных для поддержания приемлемого уровня физического состояния космонавта в экспедиции.

В докладе рассмотрены варианты конструкции и весовые характеристики системы искусственной гравитации на многоразовом атмосферно-космическом комплексе в экспедиции на Марс или экспедиции облета Марса и Венеры.

История вопроса.

Более 50 лет победного шествия космонавтика поставила на повестку дня множество злободневных вопросов, связанных с освоением космоса, в том числе вопросы создания искусственной гравитации. Авторы ряда решений даже купили патенты на свои разработки [1-9]. Заглянув на форум [15] в Интернете мы увидим: «В космосе силы тяжести нет. Зато возможно создание центробежной силы. И чтобы создать на космическом корабле искусственную гравитацию, нужно часть космического корабля выполнить, например, в виде кольца движущегося вокруг своей оси. В этом случае на объекты, находящиеся внутри этого кольца (люди, стулья, столы) будет действовать центробежная сила, которая будет прижимать объекты к «полу». Объекты будут крутиться с кольцом относительно всей остальной вселенной. Внутри кольца космонавты замечать этого не будут, и не будут находиться в невесомости», несмотря на свободный полет корабля. В кольце космонавты будут ходить, как по Земле».

Слайд1

Рис. 1. Экспериментальный модуль МКС с искусственной гравитацией

В США предложена космическая станция со спальным отсеком тороидальной формы, вращающимся вокруг своей оси для обеспечения восстановления физического состояния космонавтов в длительном полете. [11].

У А. Казанцева в «Донкихотах вселенной» [10] описан межзвездный корабль в виде многокилометровой тросовой сцепки двигательного модуля и жилого модуля.

Проблема невесомости: Невесомость негативно влияет на организм человека. [11,12]. Так, одним из последствий ее воздействия является быстрое атрофирование мышц и последующее снижение всех физических показателей организма. На МКС для решения этой проблемы установлены специальные тренажеры и специальные костюмы (пингвин), регулирующие кровообращение, на которых космонавты занимаются по несколько часов в день. Но тренажеры — это же скучно, гораздо интереснее было бы создать искусственную гравитацию, не выматывающую космонавтов изнуряющими тренировками.

Одним из способов создания искусственной гравитации, который то и дело описывается в общеизвестных работах фантастов и ученых, является создание космический станции, которая бы вращалась вокруг своей оси («Звезда КЭЦ», «Солярис»). Такое вращение привело бы к тому, что на космонавтов или жителей станции постоянно оказывала бы влияние центробежная сила, которую они бы ощущали как гравитационную силу. Подобных проектов очень много, чтобы быстро получить представление о том, что же это за станции, можно почитать несколько небольших статей из Википедии: по искусственной гравитации – где ее предлагается создать за счет вращения [1-11].

Почему же эти решения, например, «Вращающаяся станция изнутри». Источник [13], не применяются на практике? Попробуем разобраться.

Идея искусственной гравитации за счет вращения основывается на принципе эквивалентности силы гравитации и силы инерции; который гласит: если инертная масса и гравитационная масса равны, то невозможно отличить, какая сила действует на тело — гравитационная или сила инерции. Простыми словами: если создать космический корабль, вращающийся вокруг своей оси, возникающая при этом центробежная сила будет «выталкивать» космонавта в сторону от центра вращения, и он сможет стоять на «полу». Чем быстрее будет вращаться корабль, и чем дальше от центра будет находится космонавт, тем сильнее будет искусственная гравитация. Сила «притяжения» F будет равна:

F = m*v2/r , где m — масса космонавта, v — линейная скорость космонавта, r — расстояние от центра вращения (радиус).

Линейная же скорость равна v = 2π*R/T, где Т — период одного оборота.

Соотношение между искусственной силой притяжения и скоростью вращения представляет собой ω2∙r = g, где ω – угловая скорость вращения, r — расстояние от центра вращения (радиус), g – перегрузка.

Посмотрим, с какими же проблемами могут столкнуться разработчики вращающейся станции.

Как видно, искусственная сила притяжения прямо зависит от расстояния от центра вращения и получается, что для небольших r сила гравитации будет значительно отличаться для головы и ног космонавта, что может сильно затруднить передвижение. Но к этому можно будет приспособиться.

Гораздо сложнее приспособиться к воздействию силы Кориолиса, которая будет возникать каждый раз, когда наш космонавт будет двигаться относительно направления вращения (Сила Кориолиса, Wikipedia). В условиях действия этой силы космонавта будет постоянно укачивать, а это не так уж и весело. Чтобы избавиться от этого эффекта, частота вращения станции должна быть менее двух оборотов в минуту и тут возникает еще одна проблема — при частоте вращения в два оборота в минуту для получения искусственной гравитации в 1g (как на Земле) радиус вращения должен быть равен 224 метрам. Представьте себе космическую станцию в виде цилиндра с диаметром равным почти полкилометра! Построить конечно можно, но будет очень сложно и очень-очень дорого.

Однако работы в этом направлении уже ведутся. Так в 2011 году НАСА предложило проект космической станции, один из модулей которой будет вращаться, обеспечивая искусственную гравитацию в 0,11-0,69g. Проект получил название «Наутилус-Х». Диаметр вращающегося модуля будет равен 9,1 либо 12 метров, а сам модуль будет служить спальным местом для 6 космонавтов.

Слайд2

Рис. 2. Орбитальная станция «Наутилус-Х»

Станцию планируется использовать как промежуточную базу для дальних космических перелетов. Одним из этапов осуществления проекта является тестирование вращающейся части на МКС, что обойдется НАСА в 150 миллионов долларов и три года работы. На постройку целой станции по проекту «Наутилус-Х» уйдет около 4 миллиардов долларов. [11]

В Интернете широко распространены различные связки модулей космических станций. Для снижения затрат топлива на раскрутку связок и даже на поддержание высоты орбит предлагается использовать поля различного рода, то есть опорное пространство космических полей. Например, в статье [14] предлагается способ снижения расхода бортовых ресурсов МКС. Указывается, что на современном уровне техники каждый космический корабль несет с собой все источники энергии: химическое ракетное топливо, батареи фотоэлементов или ядерные реакторы. Пополнение запасов энергии, путем доставки ее источников с Земли, весьма дорого. Например, для поддержания Международной космической станции (МКС) на орбите заданной высоты (360 км) в течение 10 лет требуется 77 тонн топлива. Если доставка на орбиту обходится минимум в $7 тыс. примерно за каждые 0,5 кг, то для поддержания орбитальных параметров МКС требуется $1,2 млрд. Если бы станция включала в себя электродинамическую связку (ЭДС), потребляющую 10% вырабатываемой на станции энергии, то для поддержания высоты орбиты потребовалось бы всего 17 тонн топлива [14]. А изменение угла наклона орбиты — операция, требующая большого расхода химического топлива, — стало бы менее энергоемким.

Связка представляет собой систему, в которой две массы соединены гибким тросом. Если трос-кабель проводит электрический ток, то конструкция становится электродинамической. В отличие от обычных систем, где с помощью химических или электрических тяговых двигателей осуществляется обмен импульсами между космическим кораблем и ракетным топливом, в ЭДС он происходит между космическим аппаратом и вращающейся планетой за счет магнитного поля. Связки давно интересовали энтузиастов космоса. Константин Циолковский и Артур Кларк рассматривали их как космические лифты, способные доставлять людей с поверхности Земли на орбиту. В середине 1960-х гг. прошли испытания 30-метровых связок, которые должны были создать силу притяжения для астронавтов. Позднее был проведен еще ряд экспериментов. Исследователи столкнулись с проблемой, связанной с высоким напряжением, воздействующим на ЭДС в условиях космоса. Пока не решена задача устойчивости связок и не найден метод гашения тех типов колебаний, к которым склонны ЭДС». В Японии правильно планируют применение связок-колесниц на орбите Луны, где нет атмосферы, а силы притяжения (нагрузки) в 6 раз меньше околоземных. (У луны нет магнитнго поля)

Слайд3

Рис. 3. Принцип действия ЭДС связки орбитальных модулей

Искусственная гравитация в межпланетной экспедиции.

Опираясь на известные разработки [1-23], можно предложить связать пару экспедиционных кораблей, направляющихся на Марс или для облета Марса и Венеры сцепкой в виде соленоида. Наличие ядерной электростанции на борту позволяет подавать знакопеременный ток в соленоид связки, превращая его в ротор относительно статора, в качестве которого используется Солнце (гелиомагнитное поле и порожденное им геомагнитное поле). Варианты устройства приведены на рисунках 3-7.

Слайд 4

Рис. 4. Электромагнитная связка модулей орбитальной станции

Слайд5

Рис. 5. Тороидальная модель орбитальной станции на электромагнитах

Слайд12

Рис. 6. Электромагнитная связка двух МАКК экспедиционного комплекса

Слайд7

Рис. 7. Электромагнитная рамка на моноблочном МАКК

При скорости вращения 2 оборота в минуту, длина связки, обеспечивающей приближенную к марсианской искусственную гравитацию 0,4 g, должна составлять около 180 метров, что вполне приемлемо. Масса связки-соленоида в форме гармони может составить при этом 900 кг.

Слайд8

Рис. 8. Варианты выполнения электромагнитной связки в форме мехов «гармони».

Использование высокотемпературных сверхпроводников позволяет создать в компактных устройствах достаточно сильное магнитное поле для раскрутки и остановки экспедиционного комплекса. В научно-технической литературе известны также предложения по созданию на экспедиционном комплексе аналога геомагнитного поля для создания радиационных поясов вокруг комплекса и защиты экипажа от солнечного и галактического радиационного воздействия.

Наличие на корабле предлагаемого устройства искусственной гравитации позволяет экспериментально проверить также и электромагнитную систему радиационной защиты. Использование мощных электромагнитных бортовых систем на базе сверхпроводников позволит провести моделирование: различных конфигураций бортового магнитного поля и натурные испытания движителей на новых физических принципах, системы накопления рабочих тел из разбегающейся массы извергаемой непрерывным термоядерным взрывом Солнца, а также создание собственного защитного радиационного пояса космического комплекса.

Выводы

1.      Проведенные информационные и расчетно-теоретические исследования и математическое моделирование, показывают возможность реализации безрасходной системы искусственной гравитации на борту межпланетного космического комплекса.

2.      На межпланетном комплексе возможно создание искусственной гравитации, соответствующей марсианским условиям, что позволяет обеспечить работоспособность членов экспедиции на Марсе без дополнительных изнуряющих спортивных мероприятий.

Список литературы

1)         Космическая станция, патент РФ № 2116942

2)         Космический комплекс с наружным гравитационным приводом, патент РФ № 2115596

3)         Космический комплекс с внутренним гравитационным приводом, патент РФ № 2115595

4)         Ремонтно-строительный космический комплекс, патент РФ № 2128605

5)         Устройство для освоения Луны, патент РФ № 2129077

6)         Способ монтажа цилиндрического космического комплекса (варианты) , патент РФ № 2130877

7)         Система подачи топлива двигательной установки патент РФ № 2131385

8)         Космодром в космосе, патент РФ № 2131830

9)         Поселение в космосе, патент РФ № 2223204

10)     А. Казанцев, «Донкихоты вселенной»

11)     Интернет ресурс. Как создать в космосе искусственную гравитацию — Новости партнеров — sdnnet_ru.htm, http://www.astronomynow.com.

12)     Интернет ресурс Астрономия по-русски.mht.

13)     Интернет ресурс. Wikipedia Commons

14)     Интернет ресурс. Электродинамические связки ЭДС, искусственная гравитация и получение энергии в космосе.htm

15)     Интернет-сервис «Вопросы и ответы».

16)     Денисов В.Д. Устройство искусственной гравитации. Авторское свидетельство с приоритетом от 1975 года

17)     Денисов В.Д. Летательный аппарат на электромагните. Авторское свидетельство с приоритетом от 1975 года

18) Денисов В.Д. На Марс на одноступенчатом корабле. Доклад на чтениях, посвященных памяти Гагарина Ю.А., г. Гагарин, 2012 г.

19) Денисов В.Д. Дело Мясищева В.М. живет. Материалы для экспозиции Мясищева В.М. в краеведческом музее г. Ефремов, 2013г.

20) Денисов В.Д. Дело Мясищева В.М. живет. Доклад на чтениях, посвященных памяти Гагарина Ю.А., г. Гагарин, 2013 г.

21) Денисов В.Д. Экспедиционный космический комплекс нового поколения, Доклад на Королевских чтениях, 2013 г.

22) Денисов В.Д. Особенности космической баллистики экспедиционного космического комплекса нового поколения, Доклад на Королевских чтениях, 2014 г.

23) Денисов В.Д. Через тернии к звездам. Доклад на чтениях, посвященных памяти Гагарина Ю.А., г. Гагарин, 2014 г.

24) В.Д.Денисов. Экспедиционный космический комплекс нового поколения. Международный Российско-Американский научный журнал «Актуальные проблемы авиационных и аэрокосмических систем», Казань-Дайтона Бич, №1(38), т.19, 2014, 145-151.

25) D.Denisov. Expeditionary space complex of new generation. International Russian-American Scientific Journal «Actual   problems of aviation and aerospace systems», Kazan-Daytona Beach, №1 (38), v.19, 2014, 152-157.

26) Электронный вариант статьи: http://www.kcn.ru/tat_en/science/ans/journals/rasj.html http://kpfu.ru/science/journals/rasj/apaas )

27) Денисов В.Д., Ошкин А.Е. Проблемы радиационной безопасности экспедиций на космическом корабле с комбинированной ядерной двигательной установкой. Труды ХХХ1Х Академических чтений по космонавтике, г. Реутов, 2015, Секция 22 имени академика В.Н.Челомея.

1601. На Земле заканчивается атомное топливо?


Зона-51
2218 подписчиков

На Земле заканчивается атомное топливо, для питания космических кораблей

21 апреля 7,8 тыс. дочитываний 1,5 мин. 8,9 тыс. просмотров. Уникальные посетители страницы.7,8 тыс. дочитываний, 88%. Пользователи, дочитавшие до конца.1,5 мин. Среднее время дочитывания публикации.

Все мы прекрасно понимаем, что для космических технологий, атом является приоритетным видом топлива, без него никуда.

Плутоний 238 и 239, это самый главный вид нуклидов, или атомов. Что бы человечеству достичь хотя бы Марса, корабль нужно питать именно плутонием. Энергии солнечных батарей не хватит. Плутоний, необходим именно для обеспечения жизнедеятельности корабля, обеспечения его необходимой энергией.

Этот вид атомов добывался десятилетиями в реакторах, путем облучения нептуния 237. На нашей планете, этот вид топлива больше не добывают. При этом его даже нельзя купить.

Плутоний 238 накопился из-за холодной войны. В разгар этой эпохи, добыча данного топлива наращивалось.

Главным аргументом служит, безопасность экологии нашей планеты. Все программы по производству плутония были незамедлительно свернуты, поскольку мир понял, какой ужас его может ждать.

Поэтому и вводятся санкции против Ирака и Северной Корее, чтобы не допустить апокалипсиса.

Самая гигантская тепловая мощь создается благодаря плутонию 238. Химических элементов, превосходящих плутоний 238, по своим показателям, в мире не существует. Радиоизотопные источники электричества, будут использоваться для электроснабжения, и жизнедеятельности корабля.

Космические объекты, отправленные человеком в дальний космос, заряжаются именно Плутонием 238. За приделами орбиты Марса, солнечные батареи уже не актуальны.

За век космонавтики, человечество практически исчерпало, все запасы плутония.

Больше всего этого атома имеет Россия и США. Но Американцы за последние десятилетия свои запасы порядком растеряли. Сегодня у США Плутония 238 имеется не более 30 килограмм. У России еще меньше. Корабль, который отправится на Марс, потребует 10 килограммов Плутония 238, а это почти все запасы США.

Даже если термоядерный двигатель будет создан, питать корабль будет нечем. Имеющегося на Земле плутония, не хватит, что бы обеспечить энергией корабль.

Будем надеяться, что мировое сообщество не станет подвергать Землю таким проблемам, и плутоний больше добывать не станут, а для космических кораблей найдут иной вид энергии.

https://zen.yandex.ru/media/zona_51/na-zemle-zakanchivaetsia-atomnoe-toplivo-dlia-pitaniia-kosmicheskih-korablei-5e9e9d12d836344f31c7c0ff?&utm_campaign=dbr

1548. время разбрасывания трудовых ресурсов прошло?

Рогозин рассказал о задачах космонавтики по покорению планет

12.04.2020 в 02:28, просмотров: 3186

Примечание русского ученого: «Сначала сократили трудовые ресурсы всего Роскосмоса на 80%, сделав его меньше кампании Илона Маска, отменили астрономию в школах, а теперь поняли, что упустили мировой тренд, о котором писал ещё Циолковский.»

Рогозин рассказал о задачах космонавтики по покорению планет

Фото: pixabay.com

Гендиректор Роскосмоса Дмитрий Рогозин рассказал, что в обновленных Основах госполитики в области космической деятельности содержится задача по освоению других планет.

Об этом он рассказал в своем видеопоздравлении с Днем космонавтики.

По словам Рогозина, российский лидер Владимир Путин подписал в начале года новую редакцию документа, связанного с развитием космоса. В нем поставлена задача «покорение планет Солнечной системы», а также развитие научного космоса.

Глава компании отметил, что российскую космонавтику ожидает переход на новую технику, что будет «серьезным вызовом для всех». Рогозин пояснил, что для создания новых ракет-носителей, пилотируемых кораблей и новых модулей для орбитальных станций, основы для покорения Луны важно не только развития производства, и новейших технологий, но и люди. О них Рогозин предложить думать в первую очередь, «о подготовке нового поколения тех, кто может создать материальную основу того, чтобы Россия по-прежнему была лидером космонавтики».

https://www.mk.ru/science/2020/04/12/rogozin-rasskazal-o-zadachakh-gospolitiki-po-pokoreniyu-planet.html

1524. как спасать космонавтов в дальних космических полетах

ИКАР: сообщение в ленте группы Комплексы и службы спасения космонавтов на орбитах 3 года назад

С развитием полётов к Луне, потребуется создать службу спасения космонавтов!

Для этого целесообразно организовать постоянное дежурство на околоземной орбите с «комплексом спасения».


Какие это будут комплексы? Кто это будет организовывать -непонятно!


РОСКОСМОС и Nasa готовятся в 2021-25 годах полететь к Луне. Думают ли наши чиновники об этих вещах, или как всегда ждут пока «Жареный петух в зад клюнет»?

Владимир: Конечно думают. ГОСТы на проекты требуют прорабатывать в проектах техногенноопасной техники и пилотируемой техники вопросы надежности, безопасности, спасения космонавтов на всех участках полета. Так что в многотомных проектах есть тома по этим проблемам.

ИКАР: сообщение в ленте группы Комплексы и службы спасения космонавтов на орбитах год назад

После подачи материалов по «Орбитальному спасательному комплексу» в РОСКОСМОС я получил ответ, который выявил коррупцию и фиктивную отчётность!

Наше письмо не было проработано специалистами, они просто отписались со стандартной формулировкой: «нецелесообразно и нерентабельно».

Поскольку спасательные операции нас ждут с началом полётов на Луну, следовательно эксперты в РОСКОСМОСе не профессиональны!

Владимир: Я думаю, что в проект уже заложены решения прошедшие экспертизу ЦНИИМаш, а наши предложения пока приняли к сведению.